23 research outputs found

    Epidemic Control on a Large-Scale-Agent-Based Epidemiology Model using Deep Deterministic Policy Gradient

    Full text link
    To mitigate the impact of the pandemic, several measures include lockdowns, rapid vaccination programs, school closures, and economic stimulus. These interventions can have positive or unintended negative consequences. Current research to model and determine an optimal intervention automatically through round-tripping is limited by the simulation objectives, scale (a few thousand individuals), model types that are not suited for intervention studies, and the number of intervention strategies they can explore (discrete vs continuous). We address these challenges using a Deep Deterministic Policy Gradient (DDPG) based policy optimization framework on a large-scale (100,000 individual) epidemiological agent-based simulation where we perform multi-objective optimization. We determine the optimal policy for lockdown and vaccination in a minimalist age-stratified multi-vaccine scenario with a basic simulation for economic activity. With no lockdown and vaccination (mid-age and elderly), results show optimal economy (individuals below the poverty line) with balanced health objectives (infection, and hospitalization). An in-depth simulation is needed to further validate our results and open-source our framework

    Genesis-DB: a database for autonomous laboratory systems

    Get PDF
    Artificial intelligence (AI)-driven laboratory automation - combining robotic labware and autonomous software agents - is a powerful trend in modern biology. We developed Genesis-DB, a database system designed to support AI-driven autonomous laboratories by providing software agents access to large quantities of structured domain information. In addition, we present a new ontology for modeling data and metadata from autonomously performed yeast microchemostat cultivations in the framework of the Genesis robot scientist system. We show an example of how Genesis-DB enables the research life cycle by modeling yeast gene regulation, guiding future hypotheses generation and design of experiments. Genesis-DB supports AI-driven discovery through automated reasoning and its design is portable, generic, and easily extensible to other AI-driven molecular biology laboratory data and beyond

    High-Performance Computing for SKA Transient Search: Use of FPGA based Accelerators -- a brief review

    Full text link
    This paper presents the High-Performance computing efforts with FPGA for the accelerated pulsar/transient search for the SKA. Case studies are presented from within SKA and pathfinder telescopes highlighting future opportunities. It reviews the scenario that has shifted from offline processing of the radio telescope data to digitizing several hundreds/thousands of antenna outputs over huge bandwidths, forming several 100s of beams, and processing the data in the SKA real-time pulsar search pipelines. A brief account of the different architectures of the accelerators, primarily the new generation Field Programmable Gate Array-based accelerators, showing their critical roles to achieve high-performance computing and in handling the enormous data volume problems of the SKA is presented here. It also presents the power-performance efficiency of this emerging technology and presents potential future scenarios.Comment: Accepted for JoAA, SKA Special issue on SKA (2022
    corecore